Example - 3D frame with torsion#

This page shows the final part of the 3D frame example which we didn’t finish in class.

Solving stiffness Matrix#

In class, we found the complete stiffness matrix:

\[\begin{split}\left[ \begin{matrix} 2000 & 1000 & 0 & 0 & 0 \\ 1000 & 4400 & 1000 & -400 & 0 \\ 0 & 1000 & 2400 & 0 & -400 \\ 0 & -400 & 0 & 400 & 0 \\ 0 & 0 & -400 & 0 & 400 \\ \end{matrix} \right] \left[ \begin{matrix} {{\varphi }_{1}} \\ {{\varphi }_{2}} \\ {{\varphi }_{3}} \\ {{\varphi }_{4}} \\ {{\varphi }_{5}} \\ \end{matrix} \right]=\left[ \begin{matrix} {{M}_{1}} \\ 2 \\ 4 \\ {{M}_{t,4}} \\ 2+{{M}_{t,5}} \\ \end{matrix} \right]\end{split}\]

Solving boundary conditions#

As we’ve no non-zero boundary conditions, we can apply the row-striking technique of lecture 1, which leads to:

\[\begin{split}\left[ \begin{matrix} 4400 & 1000 \\ 1000 & 2400 \end{matrix} \right] \left[ \begin{matrix} {{\varphi }_{2}} \\ {{\varphi }_{3}} \end{matrix} \right]=\left[ \begin{matrix} 2 \\ 4 \end{matrix} \right]\end{split}\]

Solving this system of equations gives:

\[\begin{split}\varphi_2 \approx 1 \cdot 10^{-4} \\ \varphi_3 \approx 1.6 \cdot 10^{-3}\end{split}\]

The support reactions can be found by inserting these into our original system of equations:

\[\begin{split}\left[ \begin{matrix} 2000 & 1000 & 0 & 0 & 0 \\ 0 & -400 & 0 & 400 & 0 \\ 0 & 0 & -400 & 0 & 400 \\ \end{matrix} \right] \left[ \begin{matrix} 0 \\ 1 \cdot 10^{-4} \\ 1.6 \cdot 10^{-3} \\ 0 \\ 0 \end{matrix} \right]=\left[ \begin{matrix} {{M}_{1}} \\ {{M}_{t,4}} \\ 2+{{M}_{t,5}} \\ \end{matrix} \right]\end{split}\]

Note that to calculate \(M_{t,4}\) the element load should be taken into account! This gives:

\[\begin{split}M_1 \approx 0.1 \text{ kNm} \\ M_{t,4} \approx -0.033 \text{ kNm} \\ M_{t,5} \approx -2.7 \text{ kNm}\end{split}\]

Postprocessing moments element \(\left(1\right)\)#

The continuum displacement field of element \(\left(1\right)\) can be described by the shape function:

\[w\left(x\right) = \left( -\cfrac{x^3}{\ell^2} + \cfrac{x^2}{\ell} \right) \varphi_2 \]

This gives:

\[\begin{split}\varphi \left(x\right) = -\cfrac{\text{d} w\left(x\right)}{\text{d}x}=\left( \cfrac{3x^2}{\ell^2} - \cfrac{2x}{\ell} \right) \varphi_2 \\ \kappa \left(x\right) = \cfrac{\text{d} \varphi\left(x\right)}{\text{d}x}=\left( \cfrac{6x}{\ell^2} - \cfrac{2}{\ell} \right) \varphi_2 \\ M \left(x\right) = EI \kappa=EI\left( \cfrac{6x}{\ell^2} - \cfrac{2}{\ell} \right) \varphi_2 \\\end{split}\]

This is a linear distribution, with values at \(x=0\) and \(x=\ell\):

\[\begin{split}M \left(0\right) \approx -0.1 \text{ kNm} \\ M \left(2\right) \approx 0.2 { kNm} \end{split}\]

The value at \(x=0\) has indeed the same absolute value as the support reactions. The sign is different because \(M_1\) is defined in the global coordinate system and \(M \left(0\right)\) is defined from our agreements on positive internal moments (leading to positive stresses at the positive \(z\)-side.)