{ "cells": [ { "cell_type": "markdown", "metadata": { "hideCode": true, "hidePrompt": true }, "source": [ "# Interactive content: Elements not including Python\n", "\n", "To add interactivity to the book, you can make use of interactive elements which are embedded in the book. You've four options:\n", "\n", " - Admonition: question provided in normal markdown language with answers in a drowdown menu. There's no feedback delivered to the student, only the correct answer no matter what the student's thinking/work.\n", " - JupyterQuiz: code-based implementation of multiple-choiche questions and numerical answer questions. This is a basic open course tool which requires you to write your quiz questions in Python language as a `dict` or to a `.json` file.\n", " - H5p: TU-Delft-licensed tool to create questions (and many other interactive elements) using an [online GUI](https://tudelft.h5p.com/). These elements are embedded into the book using an iframe which requires very little coding. This elements are easier to implement than the JupyterQuiz and have more features (although proper numerical answer questions are missing). More information on this is provided in [this subchapter](h5p.md)\n", " - Grasple-exercises: TU-Delft-licensed tool to creating math-based quiz questions. Again, these elements are embedded into the book using an iframe which requiries very little coding. These elements are very well suited to math-based problems as it allows analytical evaluation of numerical values and formulas. Furthermore, Grasple allows parameterization (not required for formative exercises). More information on this is provided in [this subchapter](grasple.md)\n", " - Custom HTML/Javascript widgets: You can create and embed html/javascript widgets, an example is shown in [this subchapter](HTML_javascript.md)\n", " - HTML/Javascript widgets using Plotly. The use of the [plotly](https://plotly.com/python/getting-started/) package is an example which allows you to create HTML/Javascript widgets from python code without any knowledge on HTML/Javascript.\n", "\n", "Examples of each type is shown below based on the following problem:\n", "\n", "A pre-fabricated bridge design is being considered for river crossings in a remote region of the world, as shown in Figure 1. Cities 1, 2 and 3 are labelled C1, C2 and C3, with bridges labelled B1-B4.\n", "\n", "```{figure} ./figures/simple-city.png\n", "---\n", "width: 600px\n", "name: exercise-simple-city\n", "---" ] }, { "cell_type": "markdown", "metadata": { "hideCode": true, "hidePrompt": true }, "source": [ "## Admonition\n", "If the probability of failure for an individual bridge is 0.1 per year, compute the probability that you cannot drive from City 1 to City 2\n", "\n", "\n", "```{admonition} Answer\n", ":class: tip, dropdown\n", "\n", "$$\n", " P_{f_{C1-C2}} = P_{f_{B1}} * P_{f_{B4-B3-B2}} = P_{f_{B1}} * (1 - (1 - P_{f_{B4}})(1 - P_{f_{B3}}*P_{f_{B2}}))\n", "$$\n", "$$\n", " P_{f_{C1 - C2}} = 0.1 * (1 - (1 - 0.1)(1 - 0.1 * 0.1)) = 0.0109\n", "$$\n", "```" ] }, { "cell_type": "markdown", "metadata": { "hideCode": true, "hidePrompt": true }, "source": [ "## JupyterQuiz" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "hideCode": true, "hidePrompt": true, "tags": [ "disable-execution-page", "disable-download-page", "remove-input" ] }, "outputs": [ { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": "var questionsabVDrvSsNeVg=[{\"question\": \"If the probability of failure for an individual bridge is 0.1 per year, compute the probability that you cannot drive from City 1 to City 2:\", \"type\": \"numeric\", \"answers\": [{\"type\": \"range\", \"value\": 0.0109, \"correct\": true, \"feedback\": \"Correct.\"}, {\"type\": \"default\", \"feedback\": \"Try again\"}]}];\n // Make a random ID\nfunction makeid(length) {\n var result = [];\n var characters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz';\n var charactersLength = characters.length;\n for (var i = 0; i < length; i++) {\n result.push(characters.charAt(Math.floor(Math.random() * charactersLength)));\n }\n return result.join('');\n}\n\n// Choose a random subset of an array. Can also be used to shuffle the array\nfunction getRandomSubarray(arr, size) {\n var shuffled = arr.slice(0), i = arr.length, temp, index;\n while (i--) {\n index = Math.floor((i + 1) * Math.random());\n temp = shuffled[index];\n shuffled[index] = shuffled[i];\n shuffled[i] = temp;\n }\n return shuffled.slice(0, size);\n}\n\nfunction printResponses(responsesContainer) {\n var responses=JSON.parse(responsesContainer.dataset.responses);\n var stringResponses='IMPORTANT!To preserve this answer sequence for submission, when you have finalized your answers:
  1. Copy the text in this cell below \"Answer String\"
  2. Double click on the cell directly below the Answer String, labeled \"Replace Me\"
  3. Select the whole \"Replace Me\" text
  4. Paste in your answer string and press shift-Enter.
  5. Save the notebook using the save icon or File->Save Notebook menu item



  6. Answer String:
    ';\n console.log(responses);\n responses.forEach((response, index) => {\n if (response) {\n console.log(index + ': ' + response);\n stringResponses+= index + ': ' + response +\"
    \";\n }\n });\n responsesContainer.innerHTML=stringResponses;\n}\nfunction check_mc() {\n var id = this.id.split('-')[0];\n //var response = this.id.split('-')[1];\n //console.log(response);\n //console.log(\"In check_mc(), id=\"+id);\n //console.log(event.srcElement.id) \n //console.log(event.srcElement.dataset.correct) \n //console.log(event.srcElement.dataset.feedback)\n\n var label = event.srcElement;\n //console.log(label, label.nodeName);\n var depth = 0;\n while ((label.nodeName != \"LABEL\") && (depth < 20)) {\n label = label.parentElement;\n console.log(depth, label);\n depth++;\n }\n\n\n\n var answers = label.parentElement.children;\n\n //console.log(answers);\n\n\n // Split behavior based on multiple choice vs many choice:\n var fb = document.getElementById(\"fb\" + id);\n\n\n\n\n if (fb.dataset.numcorrect == 1) {\n // What follows is for the saved responses stuff\n var outerContainer = fb.parentElement.parentElement;\n var responsesContainer = document.getElementById(\"responses\" + outerContainer.id);\n if (responsesContainer) {\n //console.log(responsesContainer);\n var response = label.firstChild.innerText;\n if (label.querySelector(\".QuizCode\")){\n response+= label.querySelector(\".QuizCode\").firstChild.innerText;\n }\n console.log(response);\n //console.log(document.getElementById(\"quizWrap\"+id));\n var qnum = document.getElementById(\"quizWrap\"+id).dataset.qnum;\n console.log(\"Question \" + qnum);\n //console.log(id, \", got numcorrect=\",fb.dataset.numcorrect);\n var responses=JSON.parse(responsesContainer.dataset.responses);\n console.log(responses);\n responses[qnum]= response;\n responsesContainer.setAttribute('data-responses', JSON.stringify(responses));\n printResponses(responsesContainer);\n }\n // End code to preserve responses\n \n for (var i = 0; i < answers.length; i++) {\n var child = answers[i];\n //console.log(child);\n child.className = \"MCButton\";\n }\n\n\n\n if (label.dataset.correct == \"true\") {\n // console.log(\"Correct action\");\n if (\"feedback\" in label.dataset) {\n fb.textContent = jaxify(label.dataset.feedback);\n } else {\n fb.textContent = \"Correct!\";\n }\n label.classList.add(\"correctButton\");\n\n fb.className = \"Feedback\";\n fb.classList.add(\"correct\");\n\n } else {\n if (\"feedback\" in label.dataset) {\n fb.textContent = jaxify(label.dataset.feedback);\n } else {\n fb.textContent = \"Incorrect -- try again.\";\n }\n //console.log(\"Error action\");\n label.classList.add(\"incorrectButton\");\n fb.className = \"Feedback\";\n fb.classList.add(\"incorrect\");\n }\n }\n else {\n var reset = false;\n var feedback;\n if (label.dataset.correct == \"true\") {\n if (\"feedback\" in label.dataset) {\n feedback = jaxify(label.dataset.feedback);\n } else {\n feedback = \"Correct!\";\n }\n if (label.dataset.answered <= 0) {\n if (fb.dataset.answeredcorrect < 0) {\n fb.dataset.answeredcorrect = 1;\n reset = true;\n } else {\n fb.dataset.answeredcorrect++;\n }\n if (reset) {\n for (var i = 0; i < answers.length; i++) {\n var child = answers[i];\n child.className = \"MCButton\";\n child.dataset.answered = 0;\n }\n }\n label.classList.add(\"correctButton\");\n label.dataset.answered = 1;\n fb.className = \"Feedback\";\n fb.classList.add(\"correct\");\n\n }\n } else {\n if (\"feedback\" in label.dataset) {\n feedback = jaxify(label.dataset.feedback);\n } else {\n feedback = \"Incorrect -- try again.\";\n }\n if (fb.dataset.answeredcorrect > 0) {\n fb.dataset.answeredcorrect = -1;\n reset = true;\n } else {\n fb.dataset.answeredcorrect--;\n }\n\n if (reset) {\n for (var i = 0; i < answers.length; i++) {\n var child = answers[i];\n child.className = \"MCButton\";\n child.dataset.answered = 0;\n }\n }\n label.classList.add(\"incorrectButton\");\n fb.className = \"Feedback\";\n fb.classList.add(\"incorrect\");\n }\n // What follows is for the saved responses stuff\n var outerContainer = fb.parentElement.parentElement;\n var responsesContainer = document.getElementById(\"responses\" + outerContainer.id);\n if (responsesContainer) {\n //console.log(responsesContainer);\n var response = label.firstChild.innerText;\n if (label.querySelector(\".QuizCode\")){\n response+= label.querySelector(\".QuizCode\").firstChild.innerText;\n }\n console.log(response);\n //console.log(document.getElementById(\"quizWrap\"+id));\n var qnum = document.getElementById(\"quizWrap\"+id).dataset.qnum;\n console.log(\"Question \" + qnum);\n //console.log(id, \", got numcorrect=\",fb.dataset.numcorrect);\n var responses=JSON.parse(responsesContainer.dataset.responses);\n if (label.dataset.correct == \"true\") {\n if (typeof(responses[qnum]) == \"object\"){\n if (!responses[qnum].includes(response))\n responses[qnum].push(response);\n } else{\n responses[qnum]= [ response ];\n }\n } else {\n responses[qnum]= response;\n }\n console.log(responses);\n responsesContainer.setAttribute('data-responses', JSON.stringify(responses));\n printResponses(responsesContainer);\n }\n // End save responses stuff\n\n\n\n var numcorrect = fb.dataset.numcorrect;\n var answeredcorrect = fb.dataset.answeredcorrect;\n if (answeredcorrect >= 0) {\n fb.textContent = feedback + \" [\" + answeredcorrect + \"/\" + numcorrect + \"]\";\n } else {\n fb.textContent = feedback + \" [\" + 0 + \"/\" + numcorrect + \"]\";\n }\n\n\n }\n\n if (typeof MathJax != 'undefined') {\n var version = MathJax.version;\n console.log('MathJax version', version);\n if (version[0] == \"2\") {\n MathJax.Hub.Queue([\"Typeset\", MathJax.Hub]);\n } else if (version[0] == \"3\") {\n MathJax.typeset([fb]);\n }\n } else {\n console.log('MathJax not detected');\n }\n\n}\n\nfunction make_mc(qa, shuffle_answers, outerqDiv, qDiv, aDiv, id) {\n var shuffled;\n if (shuffle_answers == \"True\") {\n //console.log(shuffle_answers+\" read as true\");\n shuffled = getRandomSubarray(qa.answers, qa.answers.length);\n } else {\n //console.log(shuffle_answers+\" read as false\");\n shuffled = qa.answers;\n }\n\n\n var num_correct = 0;\n\n\n\n shuffled.forEach((item, index, ans_array) => {\n //console.log(answer);\n\n // Make input element\n var inp = document.createElement(\"input\");\n inp.type = \"radio\";\n inp.id = \"quizo\" + id + index;\n inp.style = \"display:none;\";\n aDiv.append(inp);\n\n //Make label for input element\n var lab = document.createElement(\"label\");\n lab.className = \"MCButton\";\n lab.id = id + '-' + index;\n lab.onclick = check_mc;\n var aSpan = document.createElement('span');\n aSpan.classsName = \"\";\n //qDiv.id=\"quizQn\"+id+index;\n if (\"answer\" in item) {\n aSpan.innerHTML = jaxify(item.answer);\n //aSpan.innerHTML=item.answer;\n }\n lab.append(aSpan);\n\n // Create div for code inside question\n var codeSpan;\n if (\"code\" in item) {\n codeSpan = document.createElement('span');\n codeSpan.id = \"code\" + id + index;\n codeSpan.className = \"QuizCode\";\n var codePre = document.createElement('pre');\n codeSpan.append(codePre);\n var codeCode = document.createElement('code');\n codePre.append(codeCode);\n codeCode.innerHTML = item.code;\n lab.append(codeSpan);\n //console.log(codeSpan);\n }\n\n //lab.textContent=item.answer;\n\n // Set the data attributes for the answer\n lab.setAttribute('data-correct', item.correct);\n if (item.correct) {\n num_correct++;\n }\n if (\"feedback\" in item) {\n lab.setAttribute('data-feedback', item.feedback);\n }\n lab.setAttribute('data-answered', 0);\n\n aDiv.append(lab);\n\n });\n\n if (num_correct > 1) {\n outerqDiv.className = \"ManyChoiceQn\";\n } else {\n outerqDiv.className = \"MultipleChoiceQn\";\n }\n\n return num_correct;\n\n}\nfunction check_numeric(ths, event) {\n\n if (event.keyCode === 13) {\n ths.blur();\n\n var id = ths.id.split('-')[0];\n\n var submission = ths.value;\n if (submission.indexOf('/') != -1) {\n var sub_parts = submission.split('/');\n //console.log(sub_parts);\n submission = sub_parts[0] / sub_parts[1];\n }\n //console.log(\"Reader entered\", submission);\n\n if (\"precision\" in ths.dataset) {\n var precision = ths.dataset.precision;\n // console.log(\"1:\", submission)\n submission = Math.round((1 * submission + Number.EPSILON) * 10 ** precision) / 10 ** precision;\n // console.log(\"Rounded to \", submission, \" precision=\", precision );\n }\n\n\n //console.log(\"In check_numeric(), id=\"+id);\n //console.log(event.srcElement.id) \n //console.log(event.srcElement.dataset.feedback)\n\n var fb = document.getElementById(\"fb\" + id);\n fb.style.display = \"none\";\n fb.textContent = \"Incorrect -- try again.\";\n\n var answers = JSON.parse(ths.dataset.answers);\n //console.log(answers);\n\n var defaultFB = \"\";\n var correct;\n var done = false;\n answers.every(answer => {\n //console.log(answer.type);\n\n correct = false;\n // if (answer.type==\"value\"){\n if ('value' in answer) {\n if (submission == answer.value) {\n if (\"feedback\" in answer) {\n fb.textContent = jaxify(answer.feedback);\n } else {\n fb.textContent = jaxify(\"Correct\");\n }\n correct = answer.correct;\n //console.log(answer.correct);\n done = true;\n }\n // } else if (answer.type==\"range\") {\n } else if ('range' in answer) {\n //console.log(answer.range);\n if ((submission >= answer.range[0]) && (submission < answer.range[1])) {\n fb.textContent = jaxify(answer.feedback);\n correct = answer.correct;\n //console.log(answer.correct);\n done = true;\n }\n } else if (answer.type == \"default\") {\n defaultFB = answer.feedback;\n }\n if (done) {\n return false; // Break out of loop if this has been marked correct\n } else {\n return true; // Keep looking for case that includes this as a correct answer\n }\n });\n\n if ((!done) && (defaultFB != \"\")) {\n fb.innerHTML = jaxify(defaultFB);\n //console.log(\"Default feedback\", defaultFB);\n }\n\n fb.style.display = \"block\";\n if (correct) {\n ths.className = \"Input-text\";\n ths.classList.add(\"correctButton\");\n fb.className = \"Feedback\";\n fb.classList.add(\"correct\");\n } else {\n ths.className = \"Input-text\";\n ths.classList.add(\"incorrectButton\");\n fb.className = \"Feedback\";\n fb.classList.add(\"incorrect\");\n }\n\n // What follows is for the saved responses stuff\n var outerContainer = fb.parentElement.parentElement;\n var responsesContainer = document.getElementById(\"responses\" + outerContainer.id);\n if (responsesContainer) {\n console.log(submission);\n var qnum = document.getElementById(\"quizWrap\"+id).dataset.qnum;\n //console.log(\"Question \" + qnum);\n //console.log(id, \", got numcorrect=\",fb.dataset.numcorrect);\n var responses=JSON.parse(responsesContainer.dataset.responses);\n console.log(responses);\n if (submission == ths.value){\n responses[qnum]= submission;\n } else {\n responses[qnum]= ths.value + \"(\" + submission +\")\";\n }\n responsesContainer.setAttribute('data-responses', JSON.stringify(responses));\n printResponses(responsesContainer);\n }\n // End code to preserve responses\n\n if (typeof MathJax != 'undefined') {\n var version = MathJax.version;\n console.log('MathJax version', version);\n if (version[0] == \"2\") {\n MathJax.Hub.Queue([\"Typeset\", MathJax.Hub]);\n } else if (version[0] == \"3\") {\n MathJax.typeset([fb]);\n }\n } else {\n console.log('MathJax not detected');\n }\n return false;\n }\n\n}\n\nfunction isValid(el, charC) {\n //console.log(\"Input char: \", charC);\n if (charC == 46) {\n if (el.value.indexOf('.') === -1) {\n return true;\n } else if (el.value.indexOf('/') != -1) {\n var parts = el.value.split('/');\n if (parts[1].indexOf('.') === -1) {\n return true;\n }\n }\n else {\n return false;\n }\n } else if (charC == 47) {\n if (el.value.indexOf('/') === -1) {\n if ((el.value != \"\") && (el.value != \".\")) {\n return true;\n } else {\n return false;\n }\n } else {\n return false;\n }\n } else if (charC == 45) {\n var edex = el.value.indexOf('e');\n if (edex == -1) {\n edex = el.value.indexOf('E');\n }\n\n if (el.value == \"\") {\n return true;\n } else if (edex == (el.value.length - 1)) { // If just after e or E\n return true;\n } else {\n return false;\n }\n } else if (charC == 101) { // \"e\"\n if ((el.value.indexOf('e') === -1) && (el.value.indexOf('E') === -1) && (el.value.indexOf('/') == -1)) {\n // Prev symbol must be digit or decimal point:\n if (el.value.slice(-1).search(/\\d/) >= 0) {\n return true;\n } else if (el.value.slice(-1).search(/\\./) >= 0) {\n return true;\n } else {\n return false;\n }\n } else {\n return false;\n }\n } else {\n if (charC > 31 && (charC < 48 || charC > 57))\n return false;\n }\n return true;\n}\n\nfunction numeric_keypress(evnt) {\n var charC = (evnt.which) ? evnt.which : evnt.keyCode;\n\n if (charC == 13) {\n check_numeric(this, evnt);\n } else {\n return isValid(this, charC);\n }\n}\n\n\n\n\n\nfunction make_numeric(qa, outerqDiv, qDiv, aDiv, id) {\n\n\n\n //console.log(answer);\n\n\n outerqDiv.className = \"NumericQn\";\n aDiv.style.display = 'block';\n\n var lab = document.createElement(\"label\");\n lab.className = \"InpLabel\";\n lab.textContent = \"Type numeric answer here:\";\n aDiv.append(lab);\n\n var inp = document.createElement(\"input\");\n inp.type = \"text\";\n //inp.id=\"input-\"+id;\n inp.id = id + \"-0\";\n inp.className = \"Input-text\";\n inp.setAttribute('data-answers', JSON.stringify(qa.answers));\n if (\"precision\" in qa) {\n inp.setAttribute('data-precision', qa.precision);\n }\n aDiv.append(inp);\n //console.log(inp);\n\n //inp.addEventListener(\"keypress\", check_numeric);\n //inp.addEventListener(\"keypress\", numeric_keypress);\n /*\n inp.addEventListener(\"keypress\", function(event) {\n return numeric_keypress(this, event);\n }\n );\n */\n //inp.onkeypress=\"return numeric_keypress(this, event)\";\n inp.onkeypress = numeric_keypress;\n inp.onpaste = event => false;\n\n inp.addEventListener(\"focus\", function (event) {\n this.value = \"\";\n return false;\n }\n );\n\n\n}\nfunction jaxify(string) {\n var mystring = string;\n\n var count = 0;\n var loc = mystring.search(/([^\\\\]|^)(\\$)/);\n\n var count2 = 0;\n var loc2 = mystring.search(/([^\\\\]|^)(\\$\\$)/);\n\n //console.log(loc);\n\n while ((loc >= 0) || (loc2 >= 0)) {\n\n /* Have to replace all the double $$ first with current implementation */\n if (loc2 >= 0) {\n if (count2 % 2 == 0) {\n mystring = mystring.replace(/([^\\\\]|^)(\\$\\$)/, \"$1\\\\[\");\n } else {\n mystring = mystring.replace(/([^\\\\]|^)(\\$\\$)/, \"$1\\\\]\");\n }\n count2++;\n } else {\n if (count % 2 == 0) {\n mystring = mystring.replace(/([^\\\\]|^)(\\$)/, \"$1\\\\(\");\n } else {\n mystring = mystring.replace(/([^\\\\]|^)(\\$)/, \"$1\\\\)\");\n }\n count++;\n }\n loc = mystring.search(/([^\\\\]|^)(\\$)/);\n loc2 = mystring.search(/([^\\\\]|^)(\\$\\$)/);\n //console.log(mystring,\", loc:\",loc,\", loc2:\",loc2);\n }\n\n //console.log(mystring);\n return mystring;\n}\n\n\nfunction show_questions(json, mydiv) {\n console.log('show_questions');\n //var mydiv=document.getElementById(myid);\n var shuffle_questions = mydiv.dataset.shufflequestions;\n var num_questions = mydiv.dataset.numquestions;\n var shuffle_answers = mydiv.dataset.shuffleanswers;\n var max_width = mydiv.dataset.maxwidth;\n\n if (num_questions > json.length) {\n num_questions = json.length;\n }\n\n var questions;\n if ((num_questions < json.length) || (shuffle_questions == \"True\")) {\n //console.log(num_questions+\",\"+json.length);\n questions = getRandomSubarray(json, num_questions);\n } else {\n questions = json;\n }\n\n //console.log(\"SQ: \"+shuffle_questions+\", NQ: \" + num_questions + \", SA: \", shuffle_answers);\n\n // Iterate over questions\n questions.forEach((qa, index, array) => {\n //console.log(qa.question); \n\n var id = makeid(8);\n //console.log(id);\n\n\n // Create Div to contain question and answers\n var iDiv = document.createElement('div');\n //iDiv.id = 'quizWrap' + id + index;\n iDiv.id = 'quizWrap' + id;\n iDiv.className = 'Quiz';\n iDiv.setAttribute('data-qnum', index);\n iDiv.style.maxWidth =max_width+\"px\";\n mydiv.appendChild(iDiv);\n // iDiv.innerHTML=qa.question;\n \n var outerqDiv = document.createElement('div');\n outerqDiv.id = \"OuterquizQn\" + id + index;\n // Create div to contain question part\n var qDiv = document.createElement('div');\n qDiv.id = \"quizQn\" + id + index;\n \n if (qa.question) {\n iDiv.append(outerqDiv);\n\n //qDiv.textContent=qa.question;\n qDiv.innerHTML = jaxify(qa.question);\n outerqDiv.append(qDiv);\n }\n\n // Create div for code inside question\n var codeDiv;\n if (\"code\" in qa) {\n codeDiv = document.createElement('div');\n codeDiv.id = \"code\" + id + index;\n codeDiv.className = \"QuizCode\";\n var codePre = document.createElement('pre');\n codeDiv.append(codePre);\n var codeCode = document.createElement('code');\n codePre.append(codeCode);\n codeCode.innerHTML = qa.code;\n outerqDiv.append(codeDiv);\n //console.log(codeDiv);\n }\n\n\n // Create div to contain answer part\n var aDiv = document.createElement('div');\n aDiv.id = \"quizAns\" + id + index;\n aDiv.className = 'Answer';\n iDiv.append(aDiv);\n\n //console.log(qa.type);\n\n var num_correct;\n if ((qa.type == \"multiple_choice\") || (qa.type == \"many_choice\") ) {\n num_correct = make_mc(qa, shuffle_answers, outerqDiv, qDiv, aDiv, id);\n if (\"answer_cols\" in qa) {\n //aDiv.style.gridTemplateColumns = 'auto '.repeat(qa.answer_cols);\n aDiv.style.gridTemplateColumns = 'repeat(' + qa.answer_cols + ', 1fr)';\n }\n } else if (qa.type == \"numeric\") {\n //console.log(\"numeric\");\n make_numeric(qa, outerqDiv, qDiv, aDiv, id);\n }\n\n\n //Make div for feedback\n var fb = document.createElement(\"div\");\n fb.id = \"fb\" + id;\n //fb.style=\"font-size: 20px;text-align:center;\";\n fb.className = \"Feedback\";\n fb.setAttribute(\"data-answeredcorrect\", 0);\n fb.setAttribute(\"data-numcorrect\", num_correct);\n iDiv.append(fb);\n\n\n });\n var preserveResponses = mydiv.dataset.preserveresponses;\n console.log(preserveResponses);\n console.log(preserveResponses == \"true\");\n if (preserveResponses == \"true\") {\n console.log(preserveResponses);\n // Create Div to contain record of answers\n var iDiv = document.createElement('div');\n iDiv.id = 'responses' + mydiv.id;\n iDiv.className = 'JCResponses';\n // Create a place to store responses as an empty array\n iDiv.setAttribute('data-responses', '[]');\n\n // Dummy Text\n iDiv.innerHTML=\"Select your answers and then follow the directions that will appear here.\"\n //iDiv.className = 'Quiz';\n mydiv.appendChild(iDiv);\n }\n//console.log(\"At end of show_questions\");\n if (typeof MathJax != 'undefined') {\n console.log(\"MathJax version\", MathJax.version);\n var version = MathJax.version;\n setTimeout(function(){\n var version = MathJax.version;\n console.log('After sleep, MathJax version', version);\n if (version[0] == \"2\") {\n MathJax.Hub.Queue([\"Typeset\", MathJax.Hub]);\n } else if (version[0] == \"3\") {\n MathJax.typeset([mydiv]);\n }\n }, 500);\nif (typeof version == 'undefined') {\n } else\n {\n if (version[0] == \"2\") {\n MathJax.Hub.Queue([\"Typeset\", MathJax.Hub]);\n } else if (version[0] == \"3\") {\n MathJax.typeset([mydiv]);\n } else {\n console.log(\"MathJax not found\");\n }\n }\n }\n return false;\n}\n/* This is to handle asynchrony issues in loading Jupyter notebooks\n where the quiz has been previously run. The Javascript was generally\n being run before the div was added to the DOM. I tried to do this\n more elegantly using Mutation Observer, but I didn't get it to work.\n\n Someone more knowledgeable could make this better ;-) */\n\n function try_show() {\n if(document.getElementById(\"abVDrvSsNeVg\")) {\n show_questions(questionsabVDrvSsNeVg, abVDrvSsNeVg); \n } else {\n setTimeout(try_show, 200);\n }\n };\n \n {\n // console.log(element);\n\n //console.log(\"abVDrvSsNeVg\");\n // console.log(document.getElementById(\"abVDrvSsNeVg\"));\n\n try_show();\n }\n ", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import json\n", "from jupyterquiz import display_quiz\n", "with open(\"jupyterquizexample.json\", \"r\") as file:\n", " questions=json.load(file)\n", "\n", "display_quiz(questions, border_radius=0)" ] }, { "cell_type": "markdown", "metadata": { "hideCode": true, "hidePrompt": true }, "source": [ "## H5p\n", "" ] }, { "cell_type": "markdown", "metadata": { "hideCode": true, "hidePrompt": true }, "source": [ "## Grasple\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## HTML/Javascript\n", "\n", "The example below shows a custom HTML/Javascript element\n", "\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plotly graph\n", "\n", "The example below is taken from the FEM-module by Frans van der Meer.\n", "When using Plotly graphs, make sure the notebook is executed in Jupyter Lab / Jupyter Notebook for the figures to be shown in the book. Running the code in VS code might break the result in the book, although the output is visible in VS code. Alternatively, add the following lines of code to your notebook to have a valid output in the book as well:\n", "\n", "```python\n", "import plotly.io as pio\n", "pio.renderers.default = 'notebook'\n", "```" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [], "source": [ "%matplotlib widget\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import plotly.subplots as sp\n", "import plotly.graph_objects as go\n", "import plotly.io as pio\n", "pio.renderers.default = 'notebook'" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6241088f78f046be86f2e814448e8790", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAIyUlEQVR4nO3WMQEAIAzAMMC/5+ECjiYKenbPzCwAADLO7wAAAN4ygAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIMIABAjAEEAIgxgAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIMIABAjAEEAIgxgAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIMIABAjAEEAIgxgAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIMIABAjAEEAIgxgAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIMIABAjAEEAIgxgAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIMIABAjAEEAIgxgAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIMIABAjAEEAIgxgAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIMIABAjAEEAIgxgAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIMIABAjAEEAIgxgAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIMIABAjAEEAIgxgAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIMIABAjAEEAIgxgAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIMIABAjAEEAIgxgAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIMIABAjAEEAIgxgAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIMIABAjAEEAIgxgAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIMIABAjAEEAIgxgAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIMIABAjAEEAIgxgAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIMIABAjAEEAIgxgAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIMIABAjAEEAIgxgAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIMIABAjAEEAIgxgAAAMQYQACDGAAIAxBhAAIAYAwgAEGMAAQBiDCAAQIwBBACIMYAAADEGEAAgxgACAMQYQACAGAMIABBjAAEAYgwgAECMAQQAiDGAAAAxBhAAIMYAAgDEGEAAgBgDCAAQYwABAGIuJnkHvKensmIAAAAASUVORK5CYII=", "text/html": [ "\n", "
    \n", "
    \n", " Figure\n", "
    \n", " \n", "
    \n", " " ], "text/plain": [ "Canvas(toolbar=None)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure()\n", "plt.rcParams.update({'font.size': 12, 'lines.linewidth': 2})\n", "\n", "def shape_functions(total_length, num_nodes, node_x):\n", " l = total_length / (num_nodes - 1)\n", "\n", " if node_x == 0:\n", " x = np.array([node_x, node_x + l])\n", " y = np.array([1.0, 0.0])\n", " elif node_x == total_length:\n", " x = np.array([node_x - l, node_x])\n", " y = np.array([0.0, 1.0])\n", " else:\n", " x = np.array([node_x - l, node_x, node_x + l])\n", " y = np.array([0.0, 1.0, 0.0])\n", "\n", " return x, y\n", "\n", "def shape_functions_for_plot(num_nodes, beam_length = 15):\n", "\n", " x_positions = np.linspace(0, beam_length, num_nodes)\n", "\n", " data = {}\n", "\n", " for node_num, x_coords in enumerate(x_positions):\n", "\n", " x, y = shape_functions(beam_length, num_nodes, x_coords)\n", " data[node_num + 1] = {'x': x, 'y': y}\n", "\n", " return data" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [], "source": [ "def linear_lagrange_shape_function(x, nodes_x_values, nodes_displacements):\n", " \"\"\"\n", " Compute the linear Lagrange shape function for a given x.\n", " Args:\n", " x (float): The x-coordinate.\n", " x0 (float): Left node position.\n", " x1 (float): Right node position.\n", " Returns:\n", " float: The shape function value.\n", " \"\"\"\n", "\n", " ratio = (x - nodes_x_values[0]) / (nodes_x_values[1] - nodes_x_values[0])\n", "\n", " return (1 - ratio) * nodes_displacements[0] + ratio * nodes_displacements[1]\n", "\n", "def function(x):\n", " \"\"\"\n", " Define the function to be plotted.\n", " Args:\n", " x (numpy.ndarray): Input values.\n", " Returns:\n", " numpy.ndarray: Corresponding function values.\n", " \"\"\"\n", " return np.sin(x) * 0.14*x\n", "\n", "def shape_functions_applied(num_elements):\n", " \"\"\"\n", " Plot linear Lagrange shape functions on a beam.\n", " Args:\n", " num_elements (int): Number of elements (segments).\n", " \"\"\"\n", "\n", " beam_length = 15\n", "\n", " num_nodes = num_elements + 1\n", " x_at_nodes = np.linspace(0, beam_length, num_nodes)\n", "\n", " y_at_nodes = function(x_at_nodes)\n", "\n", " x_data = np.linspace(0, beam_length, 1000)\n", "\n", " # Use NumPy to compute y_vals efficiently\n", " y_vals = np.zeros_like(x_data)\n", "\n", " for element_number in range(num_elements):\n", " mask = (x_at_nodes[element_number] <= x_data) & (x_data <= x_at_nodes[element_number + 1])\n", " y_vals[mask] = linear_lagrange_shape_function(x_data[mask], x_at_nodes[element_number:element_number + 2], y_at_nodes[element_number:element_number + 2])\n", "\n", " return x_data, function(x_data), y_vals\n" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
    " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Colors\n", "grey = '#eeeeee' # light grey fill\n", "\n", "# Prepare all the graphs that are to be plotted\n", "range_elements = np.concatenate((np.arange(1, 7, 1), np.arange(7, 35, 4), np.arange(35, 55, 8)))\n", "\n", "# Create subplots\n", "fig = sp.make_subplots(rows=1, cols=2, subplot_titles=(\"Shape functions\", \"Exact and approximated solution\"))\n", "\n", "base_traces_left = 2 # Number of traces in the left plot that are always visible\n", "base_traces_right = 0 # Number of traces in the right plot that are always visible\n", "\n", "# Add traces to the subplots\n", "x_data, y_data, y_vals = shape_functions_applied(10)\n", "\n", "# Add left plot traces (Cumulative Influx and Cumulative Outflux)\n", "fig.add_trace(\n", " go.Scatter(\n", " visible=True, # Show for the first value of a\n", " x=x_data,\n", " y=y_data,\n", " # line=dict(color='#6a8ba4'),\n", " mode='lines',\n", " name='Exact solution'\n", " ),\n", " row=1,\n", " col=2\n", ")\n", "\n", "\n", "# Add traces to the subplots\n", "for a in range_elements:\n", "\n", " x_data, y_data, y_vals = shape_functions_applied(a)\n", "\n", " fig.add_trace(\n", " go.Scatter(\n", " visible = True if a == range_elements[0] else False, # Show for the first value of a\n", " x=x_data,\n", " y=y_vals,\n", " # line=dict(color='#FFA500'),\n", " mode='lines',\n", " name='Numerical solution'\n", " ),\n", " row=1,\n", " col=2\n", " )\n", "\n", "\n", "# Add traces to the subplots\n", "for a in range_elements:\n", "\n", " data = shape_functions_for_plot(a + 1)\n", "\n", " for i in range(1, a + 2):\n", "\n", " info = data[i]\n", " x, y = info['x'], info['y']\n", "\n", " # Add right plot traces (Cumulative Outflux for each 'a' value)\n", " fig.add_trace(\n", " go.Scatter(\n", " visible = True if a == range_elements[0] else False,\n", " x=x,\n", " y=y,\n", " mode='lines',\n", " name=f'Node shape for node {i}'\n", " ),\n", " row=1,\n", " col=1\n", " )\n", "\n", "# Create and add slider\n", "steps = []\n", "for i in range(0, range_elements.shape[0]):\n", "\n", " a = range_elements[i]\n", " visarray = [False] * len(fig.data)\n", "\n", " visarray[0] = True\n", " visarray[i + 1] = True\n", "\n", " start_of_second_plot = 1 + len(range_elements)\n", "\n", " if i==0:\n", " start_index=start_of_second_plot\n", " else:\n", " start_index = start_of_second_plot + np.sum(range_elements[0:i]) + i\n", "\n", " num_lines = range_elements[i] + 1\n", " end_index = start_index + num_lines\n", "\n", " visarray[start_index:end_index] = [True] * (end_index - start_index)\n", " \n", " step = dict(\n", " method=\"update\",\n", " args=[{\"visible\": visarray}],\n", " label=str(round(range_elements[i], 1))\n", " )\n", " steps.append(step)\n", "\n", "sliders = [dict(\n", " active=0, # Show the first value of 'a' initially\n", " currentvalue={\"prefix\": r\"Number of elements: \"},\n", " steps=steps\n", ")]\n", "\n", "fig.update_layout(\n", " sliders=sliders,\n", " title=\"Applying shape functions\",\n", " legend_title=\"Legend\",\n", " legend=dict(\n", " x=1.05, # Adjust the legend position\n", " y=0.5\n", " )\n", ")\n", "\n", "fig.update_xaxes(title_text='x', row=1, col=1, range=[x_data[0], x_data[-1]])\n", "fig.update_xaxes(title_text='x', row=1, col=2, range=[x_data[0], x_data[-1]])\n", "\n", "# Update y-axis properties\n", "fig.update_yaxes(title_text='Node shape value', row=1, col=1, range=[-0.1, 1.1])\n", "fig.update_yaxes(title_text='y', row=1, col=2, range=[-2.1, 2.1])\n", "\n", "fig.show()" ] } ], "metadata": { "celltoolbar": "Tags", "hide_code_all_hidden": true, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.18" } }, "nbformat": 4, "nbformat_minor": 4 }